Phase-field approach to implicit solvation of biomolecules with Coulomb-field approximation.

نویسندگان

  • Yanxiang Zhao
  • Yuen-Yick Kwan
  • Jianwei Che
  • Bo Li
  • J Andrew McCammon
چکیده

A phase-field variational implicit-solvent approach is developed for the solvation of charged molecules. The starting point of such an approach is the representation of a solute-solvent interface by a phase field that takes one value in the solute region and another in the solvent region, with a smooth transition from one to the other on a small transition layer. The minimization of an effective free-energy functional of all possible phase fields determines the equilibrium conformations and free energies of an underlying molecular system. All the surface energy, the solute-solvent van der Waals interaction, and the electrostatic interaction are coupled together self-consistently through a phase field. The surface energy results from the minimization of a double-well potential and the gradient of a field. The electrostatic interaction is described by the Coulomb-field approximation. Accurate and efficient methods are designed and implemented to numerically relax an underlying charged molecular system. Applications to single ions, a two-plate system, and a two-domain protein reveal that the new theory and methods can capture capillary evaporation in hydrophobic confinement and corresponding multiple equilibrium states as found in molecular dynamics simulations. Comparisons of the phase-field and the original sharp-interface variational approaches are discussed.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Level-Set Variational Implicit-Solvent Modeling of Biomolecules with the Coulomb-Field Approximation

Central in the variational implicit-solvent model (VISM) [Dzubiella, Swanson, and McCammon Phys. Rev. Lett.2006, 96, 087802 and J. Chem. Phys.2006, 124, 084905] of molecular solvation is a mean-field free-energy functional of all possible solute-solvent interfaces or dielectric boundaries. Such a functional can be minimized numerically by a level-set method to determine stable equilibrium confo...

متن کامل

Yukawa-Field Approximation of Electrostatic Free Energy and Dielectric Boundary Force.

A Yukawa-field approximation of the electrostatic free energy of a molecular solvation system with an implicit or continuum solvent is constructed. It is argued through the analysis of model molecular systems with spherically symmetric geometries that such an approximation is rational. The construction extends non-trivially that of the Coulomb-field approximation which serves as a basis of the ...

متن کامل

Evaluation of Hydration Free Energy by Level-Set Variational Implicit-Solvent Model with Coulomb-Field Approximation

In this article, we systematically apply a novel implicit-solvent model, the variational implicit-solvent model (VISM) together with the Coulomb-Field Approximation (CFA), to calculate the hydration free energy of a large set of small organic molecules. Because these molecules have been studied in detail by molecular dynamics simulations and other implicit-solvent models, they provide a good be...

متن کامل

Discrete Image Approximations of Ionic Solvent Induced Reaction Field to Charges

Two methods of discrete images are proposed to approximate the reaction field from ionic solvent for a point charge inside a dielectric spherical cavity. Fast and accurate calculation of such a reaction field is needed in hybrid explicit/implicit solvation models of biomolecules. A firstand a second-order image approximation methods, in the order of u = λa (λ – the inverse Debye screening lengt...

متن کامل

Fast Surface Based Electrostatics for biomolecules modeling

We analyze de ciencies of commonly used Coulomb approximations in Generalized Born solvation energy calculation models and report a development of a new fast surface-based method (FSBE) for numerical calculations of the solvation energy of biomolecules with charged groups. The procedure is only a few percents wrong for molecular con gurations of arbitrary sizes, provides explicit values for the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of chemical physics

دوره 139 2  شماره 

صفحات  -

تاریخ انتشار 2013